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Abstract
Excessive synchronization in neural activity is a hallmark of Parkinson’s disease (PD). A promising technique for treating PD is
coordinated reset (CR) neuromodulation in which a neural population is desynchronized by the delivery of spatially-distributed
current stimuli using multiple electrodes. In this study, we perform numerical optimization to find the energy-optimal current
waveform for desynchronizing neuronal network with CR stimulation, by proposing and applying a new optimization method
based on the direct search algorithm. In the proposed optimizationmethod, the stimulating current is described as a Fourier series,
and each Fourier coefficient as well as the stimulation period are directly optimized by evaluating the order parameter, which
quantifies the synchrony level, from network simulation. This direct optimization scheme has an advantage that arbitrary changes
in the dynamical properties of the network can be taken into account in the search process. By harnessing this advantage, we
demonstrate the significant influence of externally applied oscillatory inputs and non-random network topology on the efficacy of
CR modulation. Our results suggest that the effectiveness of brain stimulation for desynchronization may depend on various
factors modulating the dynamics of the target network. We also discuss the possible relevance of the results to the efficacy of the
stimulation in PD treatment.

Keywords Parkinson’s disease . Brain stimulation . Coordinated reset . Synchronization . Numerical optimization

1 Introduction

Stimulation of local brain regions, such as the subthalamic
nucleus (STN), with repeated current pulses is widely used
for the treatment of Parkinson’s disease (PD) (Kühn and
Volkmann 2017; Herrington et al. 2016). Such brain stimula-
tion has a well-established clinical effect of improving the
major symptoms of PD (e.g., rigidity and tremor) as well as
the quality of life (Benabid et al. 2009) in certain patient pop-
ulations. On the other hand, despite the accumulation of

knowledge on the related neurophysiology, the methodology
of brain stimulation has not been substantively changed over
the decades since its introduction (Wang et al. 2016; Brocker
et al. 2017). One of the problems to be solved for this treatment
is that the life span of implanted stimulators is much shorter than
the life expectancy of many patients, meaning that multiple
surgeries are necessary to replace the stimulating device over
the treatment period (Foutz and McIntyre 2010). Prolonging
stimulator battery life would require a stimulus delivery
method that can directly target the pathological process
and decrease the energy consumption (Foutz and McIntyre
2010; Wang et al. 2016). Further, stimulation with smaller
current magnitudes is quite important for avoiding side ef-
fects (e.g., stimulation-induced dyskinesia), which could be
created by the spread of current to the brain structures sur-
rounding the electrode (Benabid et al. 2009). Similar con-
siderations apply to thalamic stimulation, which has a long
history of use for essential tremor and parkinsonian tremor
(Ondo et al. 1998; Kumar et al. 2003; Baizabal-Carvallo et
al. 2014). Motor cortex stimulation (MCS) also shows
promise for improving parkinsonian motor symptoms
(Drouot et al. 2004; Gaynor et al. 2008; Lavano et al.
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2017), and the development of this technology should focus
on energy-efficient approaches as well.

A promising technique to improve the efficiency of stimula-
tion and reduce the energy consumption and potential adverse
effects is coordinated reset (CR) neuromodulation (Tass 2003;
Tass et al. 2012; Ebert et al. 2014; Wang et al. 2016). CR mod-
ulation involves the delivery of spatially-distributed pulse trains
from multiple electrodes, which is hypothesized to separate a
population of firing neurons into subgroups by resetting the
phases of their activity. Accordingly, a synchronized network
state, which is a hallmark of basal ganglia activity in parkinson-
ism (Rubin et al. 2012; Mallet et al. 2008; Gatev et al. 2006),
may be switched into a desynchronized state. A key advantage
of CR modulation is that its effects can be achieved with lower
pulse amplitudes than are used in the conventional stimulation
method (Wang et al. 2016). Recent experimental studies have
shown that CR stimulation of STN can cause both acute and
long-lasting improvement in the motor function of parkinsonian
monkeys (Tass et al. 2012; Wang et al. 2016). Additionally, the
effectiveness of the CR technique has been supported by a short-
term trial in PD patients (Adamchic et al. 2014).

Energy-efficient current waveforms for brain stimulation
have been investigatedwith various approaches, such as optimal
control theory (Jezernik et al. 2010; Jezernik and Morari 2005;
Forger et al. 2011), numerical optimization with genetic algo-
rithms (Wongsarnpigoon and Grill 2010), and the detailed sim-
ulation (and experimental study) of neuronal activation (Sahin
and Tie 2007; Foutz andMcIntyre 2010;Wongsarnpigoon et al.
2010; see Grill 2015 for review). These studies have shown that
the high-frequency pulsatile input, which is currently used for
implantable stimulators, may not be energy efficient, and the
optimization of waveform shapes may be required to minimize
energy consumption. Further, recent studies (Wilson and
Moehlis 2014a, 2014b) have also applied optimal control theory
and revealed that a current waveform that leads to positive
Lyapunov exponents in neuronal dynamics is more energy effi-
cient than pulsatile stimuli for desynchronizing network activity.
It can be expected from these studies that the energy consump-
tion by CR neuromodulation could be further decreased by op-
timally selecting a stimulation waveform instead of using con-
ventional pulse stimuli.

Therefore, in this study, we construct a model of a neuronal
network with multiple stimulating currents and use it to numer-
ically explore the energy-optimal current waveform for
desynchronization of model neurons by CR neuromodulation.
We propose an efficient optimization method in which the time
course of stimuli is described by a second-order Fourier series,
and each Fourier coefficient and the stimulation period are glob-
ally optimized through a direct search algorithm (Hooke and
Jeeves 1961; Dixon 1972; Khambampati et al. 2010; Kubota
et al. 2015) to achieve desynchronization. We show that the
energy consumption is substantially lower when the Fourier
input rather than the conventional pulse input is used for CR

modulation. In addition, we show that the effectiveness of the
CR stimulation could be significantly modulated by the charac-
teristics of network, such as the existence of external oscillatory
inputs and non-random topological structure. These results
serve to provide valuable insights relevant to the derivation of
more effective and efficient stimulation techniques.

2 Methods

2.1 Network model

We constructed a model network consisting of N = 100 leaky
integrate-and-fire (LIF) neurons. The neurons are spatially
arranged on a grid within a square having a side length of 2
and a center at the origin (Fig. 1a). The membrane potential Vi
of the ith neuron obeys the following equation:

τm
dVi

dt
¼ − Vi−ELð Þ þ RIi; ð1Þ

where τm = 20ms is the membrane time constant,EL = −74mV
is the leak potential, R = 40MΩ is the input resistance, and Ii is
the input current (Troyer and Miller 1997; Liu and Wang
2001). The LIF neuron fires an action potential when the mem-
brane potential rises to −54 mV. Subsequently, the membrane
potential is reset to −74 mVand is kept at this value during an
absolute refractory period of 2 ms.

All synapses between neurons are assumed to be excitato-
ry. The synaptic current that the ith neuron receives is I isyn =

gAs
i
AVi, corresponding to a reversal potential of 0 mV, with the

peak conductance gA = 0.5 nS. The activation variable siA
increases by 1 when a presynaptic cell fires and then it decays
with a time constant of 5 ms (Izhikevich et al. 2004). The total
input current to the ith neuron is described as

I i ¼ −I isyn þ I sumstim;i þ ηi þ acomηcom: ð2Þ

Here, I sumstim;i is the sum of the stimulating currents from all

electrodes that are received by the ith neuron (see below). ηi
denotes white Gaussian noise with mean μind and standard
deviation 0.1μind, which is applied independently to each neu-
ron at every integration time step of 0.5 ms. ηcom represents
white Gaussian noise that is applied to all model neurons and
has mean μcom and standard deviation 0.1μcom. The intensity
of this common input changes periodically with time accord-
ing to the following equation:

acom ¼ Amax
com−A

min
com

� �
sin 2π f comtð Þ þ 1½ �=2þ Amin

com; ð3Þ

where Amax
com = 1, Amin

com = 0.1, and fcom = 25 Hz. In all figures
except for Fig. 5, only the independent noise is applied, with-
out the common noise, by setting μind = 0.52 nA and μcom =
0 nA. In Fig. 5, the common noise is introduced by setting
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μcom to a positive value. In this case, to maintain the overall
level of the sum of the two types of noise, μind is altered as

function of μcom by maintaining the relation of μind þ μcom

Amax
com þ Amin

com

� �
=2 ¼ 0:52 (in nA).

In the simulations except those for Fig. 6, we used a ran-
dom network where a synaptic connection from any one neu-
ron to another is randomly introduced with the probability of
0.2. In Fig. 6, we made a comparison between networks with

random and small-world topologies (Watts and Strogatz
1998). Here, we first generated a planar regular network, in
which each neuron has bidirectional connections with the neu-
rons surrounding it, and then each connection was randomly
rewired, similar to the algorithm presented in Prettejohn et al.
(2011). The rewiring probability was set to 1 and 0.06 for the
random and small-world networks, respectively. The random
rewiring of a regular network leads to an increase in the num-
ber of the neuron pairs with unidirectional connections (n1)
and a decrease in the number of the neuron pairs with bidirec-
tional connections (n2). Accordingly, the random network has
larger n1 and smaller n2 values than the small world, while the
total number of connections (i.e., n1 + 2n2) is the same for the
two networks. In the networks used in Fig. 6, (n1,n2) = (670, 7)
and (40, 322) for the random and small-world connectivity,
respectively, with n1 + 2n2 = 684 for both cases. To elucidate
the effect of changing the network topology without changing
the values of n1 and n2, we additionally consider a network
with a connectivity that is randomly selected under the condi-
tion that both the n1 and n2 values are the same as those of the
small world (i.e., (n1,n2) = (40, 322)) in Fig. 6e (blue line).

2.2 Current stimulation

To simulate the CR modulation, we introduced M = 4 elec-
trodes located at the corners of the network (Tass 2003) (Fig.
1a). The waveform of stimulating currents (Fig. 1b) is de-
scribed with a Fourier series as follows:

I jstim ¼ I0 f stim t−
j−1ð ÞT
M

� �
; ð4Þ

f stim tð Þ ¼ ∑
p

n¼1
ancos

2nπt
T

þ bnsin
2πnt
T

� �
: ð5Þ

Here, I jstim (j = 1,⋯,M) is the current generated by the jth
electrode, I0 = 0.4 nA is a parameter to set the current magni-
tude, T is the stimulation period, and an and bn (n = 1,⋯,p) are
the Fourier coefficients. As shown in Eq. (4), the phases of
currents produced by the M electrodes are equally spaced in
[0, 2π]. We assumed p = 2 throughout this study, since the
results of optimization were not improved with a larger value
of p. Note that the constant term in the Fourier series is re-
moved to make the integral of the current equal to zero, be-
cause charge balance is important to prevent damage of the
electrode and of neuronal tissue due to charge transfer (Ebert
et al. 2014; Cogan 2008; Cogan et al. 2006).

The total current stimulation received by the ith neuron is
described as

I sumstim;i ¼ ∑
M

j¼1
σijI

j
stim: ð6Þ

Here, σij represents the impact of the stimulus from the jth
electrode on the ith neuron, which decays with the unitless
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Fig. 1 Set-up of network and stimulation. a In the network model, 100
LIF neurons are arranged on a planar grid such that their positions in the
x-y plane are {(nxΔx − 1, nyΔy − 1)|nx, ny = 0, 1,⋯, 9}(Δx =Δy = 2/9).
The four stimulation electrodes are placed at the corners of the grid with
coordinates (±1, ±1). (b and c) Examples of the optimal current
waveforms for Fourier inputs (b) and symmetric pulse inputs (c). The
weight parameter α = 3.1 nA−2·mS is used for the optimization in this
example. Each current shown in (b) and (c) is delivered by the electrode
represented with the same color in (a)
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relative distance measure dij between the electrode and neuron
as follows:

σij ¼ min
1

dijlc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4 dij=lc

� �2q ;σc

0
B@

1
CA; ð7Þ

with σc = 1 (i.e., with σij normalized to be less than or equal to
1) and lc = 2 (Ebert et al. 2014).

For comparison to the Fourier inputs, we also tested con-
ventional pulse-train inputs (Fig. 1c). Tomodel the application
of pulse inputs, fstim(t) in Eq. (5) is replaced by the following
equations:

f stim tð Þ ¼ ApG t−tp
� �

−ApG t−tp−yp
� �

; ð8Þ

G tð Þ ¼ H sin 2πt=Tð Þð Þ � 1−H sin 2π t−δp
� �

=T
� �� �	 


; ð9Þ

where H(x) is the Heaviside step function satisfying H(x) = 1
for x ≥ 0 and H(x) = 0 for x < 0. The pulse inputs are biphasic
and symmetric, i.e., composed of brief depolarizing and hyper-
polarizing pulses with the same magnitude, to maintain charge
balance as in the case of Fourier inputs (Ebert et al. 2014). Ap
and δp are the amplitude and width of the symmetric pulses,
respectively. The pulse width is assumed to be within a range of
δp≤1.5 ms, which includes typical values used for PD treatment
(Kuncel and Grill 2004; Reich et al. 2015; Brocker et al. 2017).
yp is the time lag between the depolarizing and hyperpolarizing
pulses, and tp sets the timing for eliciting the depolarizing pulse.

In one figure (Fig. S1, supplementary material), we addi-
tionally examined the biphasic asymmetric pulse, in which the
hyperpolarizing pulse has longer temporal width and smaller
amplitude than the depolarizing pulse (Fig. S1a) (Cogan 2008;
Cogan et al. 2006; Fan et al. 2016; Hofmann et al. 2011). The
asymmetric pulse is frequently used for deep brain stimulation
(DBS) to minimize the polarization by the charge-balancing
pulse (Cogan 2008; Cogan et al. 2006). In cases where the
asymmetric pulse is applied, fstim(t) in Eq. 5 is replaced by the
following equations (Fan et al. 2016):

f stim tð Þ ¼ Ar F G t−trð Þð Þ; ð10Þ

F xð Þ ¼ 1; x ¼ 1ð Þ;
−δp= T−δp

� �
; x ¼ 0ð Þ;

�
ð11Þ

Here, Ar and δp are the amplitude and width of the
depolarizing pulse, respectively, and tr determines the pulse
timing. The amplitude and width of the hyperpolarizing pulse
are Arδp/(T − δp) and T − δp, respectively, so that the charge
balance is maintained.

2.3 Optimization search

We performed optimization of the current waveform for the
CR stimuli to elucidate the stimulation method that can

desynchronize the network with minimal energy consump-
tion. For this purpose, the objective function to be minimized
was defined as

J ¼ ρþ αE; ð12Þ
where ρ is the average order parameter to signify the level of
synchrony (see below), E is the rate of the energy consump-
tion per unit time, and α is a positive weighting parameter.
The energy consumption rate is described by the following
equation:

E ¼ ∑
M

j¼1
1=Tð Þ∫T0 I jstim tð Þ� 2

Z tð Þdt; ð13Þ

where the impedance Z(t) is simply assumed to be constant
(Z(t) = 1 kΩ) (Foutz and McIntyre 2010). From network sim-
ulation during current stimulation, we obtained the time
course of order parameter r(t) as follows:

r tð Þ ¼ 1

N
∑
N

j¼1
eiϕ j tð Þ

�����
�����: ð14Þ

Here, ϕj is the firing phase of the jth neuron, defined as
ϕj(t)= 2π(t − tj, k)/(tj, k + 1 − tj, k) for tj, k ≤ t < tj, k + 1, where tj, k is
the kth firing time of the jth neuron (Ebert et al. 2014). To
estimate the average order parameter ρ, the network simula-
tion was performed 32 times using different random number
sequences, and the trial and temporal average of r(t) was taken
as follows:

ρ ¼ 1=Tað Þ∫t0þTa

t0 r tð Þdt
D E

; ð15Þ

where the angular brackets denote a trial average and Ta = 5 s
is the interval for temporal averaging.

To optimize the Fourier inputs, we performed an optimiza-
tion search to find the values of an and bn (n = 1,⋯,p) and T
(Eqs. (4) and (5)) that minimize the value of objective function
J. Similarly, we conducted optimization over the values of Ap,
tp, yp, δp, and T (Eqs. (8) and (9)) for the symmetric pulses, and
over the values of Ar, tr, δp, and T (Eqs. (10) and (11)) for the
asymmetric pulses, to minimize the J value.

For the optimization algorithm, we used the pattern search,
which is a widely used direct search method (Hooke and
Jeeves 1961; Dixon 1972; Khambampati et al. 2010; Kubota
et al. 2015). In this algorithm, the two phases called explor-
atory moves and pattern moves are iterated alternately. In an
exploratory move, the search point locally moves around in all
directions in the parameter space near the base point xb, which
is the starting search point of the exploratory move. Let us
define xn and xp as the points that provide the best objective
function value among the points visited in the exploratory
move for the current and previous iteration, respectively.
Then, in the pattern move, the base point makes a relatively
long move such that xb← xn + (xn − xp), where xn − xp is a
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vector that represents the best search direction predicted at the
present time. The new base point becomes the starting point of
the exploratory move for the next step. The use of the pattern
move is important to accelerate the search speed by using the
information regarding the objective function obtained in the
past. The pattern search is finished in cases where the base
point reaches a local optimal solution at which the objective
function value cannot be improved by the exploratory move.
To perform global search in the parameter space, we repeated
the pattern search 8 times from randomly selected starting
points and adopted the solution providing the smallest J value
as an estimate of the global optimal solution.

When the weight parameterα is sufficiently large, the mag-
nitude of the stimulating current converges to zero (i.e., E = 0)
at the optimal solution. This implies that the optimal stimulus
is too weak to be detected by the current optimization search.
Therefore, an upper bound on the weight parameter is
imposed.

2.4 Numerical simulation

The network model was implemented in the C++ language.
The optimization search was executed by repetitively running
the executable file, generated by compiling the C++ source
code, from a MATLAB program. Finding a global optimal
solution for each case requires 1000 iterations of objective
function evaluation, which correspond to 16 h on an Intel
Xeon E5–2660 v4 personal computer (2.00 GHz). The source
codes are available upon request.

3 Results

3.1 Optimization of the current waveform for CR
modulation

To explore an energy efficient method for brain stimulation,
we constructed a network model (Fig. 1a) and performed op-
timization of the current waveform for CR modulation to de-
crease the energy consumption for desynchronization. The
curves in Fig. 1b show the time courses of the optimized
stimuli given by the four electrodes in Fig. 1a. Here, we ap-
plied an optimization method in which the current waveform
is described as a second-order Fourier series, and each Fourier
coefficient and the stimulation period are optimized to mini-
mize the value of an objective function (Eq. (12)). Since the
oscillatory phases of the Fourier inputs from the four elec-
trodes are different, the population of firing neurons may be-
come divided into subgroups (Tass 2003). Consistent with this
idea, we find that application of the optimal Fourier stimuli
can rapidly decrease the order parameter, producing a
desynchronized state, as shown in Fig. 2 (solid line). In fact,
the dynamics of the stimulated neuronal population depends

on the value of the objective function weight parameter α (Eq.
(12)), as we shall discuss below.

We also performed optimization of conventional symmet-
rically biphasic pulses (Eqs. (8) and (9); Fig. 1c), and exam-
ined the decrease in order parameter induced by the optimal
pulse stimuli (Fig. 2, dashed line). The energy consumption
required for the optimal pulse input (E = 0.0786 nA2·kΩ) is 3
times larger than that for the optimal Fourier input (E =
0.0246 nA2·kΩ), although the final levels of the order param-
eter achieved by the Fourier and pulse inputs are similar (ρ =
0.117 and 0.134, respectively; see Eq. (15)). Further, the time
course of the decrease in order parameter is much faster for the
Fourier than pulse input (Fig. 2, inset). In fact, the time dura-
tions required to reduce the order parameter below 0.4 are 213
and 514 ms for the Fourier and pulse inputs, respectively.
These results suggest that stimulation with the Fourier input
is more energy-efficient and disrupts synchronous activity
faster than stimulation with the symmetric pulse input.

To more clearly compare the energy efficiency of the
Fourier and symmetric pulse stimuli, the optimal solutions
for the both stimuli were obtained with various values of the
weight parameter α (Eq. (12)). Figure 3a, b show the values of
the average order parameter ρ and the energy consumption
rate E as functions of α for the cases of the Fourier (Fig. 3a)
and symmetric pulse inputs (Fig. 3b). Note the difference in
horizontal and vertical scales between these two panels. The
results show that as α increases, the values of ρ and E tend to
increase and decrease, respectively, for the both types of in-
puts, as expected from the objective function in Eq. (12). The
relationship between ρ and E in Fig. 3c clarifies that the
Fourier input requires less energy consumption than the sym-
metric pulse input when the same level of order parameter is
attained. Additionally, we examined the optimization of an
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stimulation (i.e., t < 0) is characterized by an average order parameter of ρ
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asymmetric pulse input that has more prolonged hyperpolar-
izing pulses (Eqs. 10 and 11; Fig. S1a) (Cogan 2008; Cogan et
al. 2006; Fan et al. 2016; Hofmann et al. 2011). The results
showed that the difference in the ρ and E values obtained with
the symmetric and asymmetric pulses are not significant for
many values of α (Fig. S1b), and thus the Fourier input is
more energy efficient than both types of pulse inputs (Fig.

S1c). These results are in line with previous studies that sug-
gest that the stimulating current with pulsatile waveforms may
not be energy optimal for activating a neuron, as mentioned
above (e.g., Forger et al. 2011; Grill 2015).

Additionally, Fig. 4 and Movies 1-3 (Supplementary
Material) compare the firing pattern of the neuronal network
without stimulation and with the optimal Fourier stimuli ob-
tained using different values of the weight parameter α. The
synchronous activity found in the absence of stimulus (Fig. 4a
and Movie 1) is changed to relatively randomized activity by
applying a moderate level of stimulus, which is obtained with
relatively largeα (α = 3.1 nA−2·mS) (Fig. 4b andMovie 2). In
this case, the firing phases of neurons show higher variation,
except for those near the corners of network at which the
neural activity is highly affected by the input from the nearest
electrode (Fig. 4b, right). The increase in the strength of stim-
ulus induced by using a smaller value of α (α = 3.1×10−3

nA−2·mS) leads to a firing pattern that combines features of
a traveling wave state and a clustered state (sometimes called a
lurching wave; see Fig. 4c and Movie 3). In the presence of
strong stimuli, the firing phases of all neurons are nearly fully
governed by the input from the nearest electrode, as shown in
Fig. 4c (right). Note that in the limit of α→∞, the network
state with the optimal stimulation matches the state without
stimulus (Fig. 4a), because in this limit, the objective function
in Eq. (12) is minimized by decreasing the E value to zero
(without considering the ρ value) (Fig. 3a). Therefore, we can
understand from Figs. 4a-c that the proposed method can gen-
erate firing patterns ranging from synchronous to randomized
to lurching wave states as the α value is decreased from very
large to small values. Figure 4d compares the waveforms of
the optimized stimuli corresponding to four different values of
α (α = 3.1 (black), 3.1×10−1 (green), 3.1×10−2 (blue), and
3.1×10−3 nA−2·mS (red)) on the same axis, where the peak
current level is normalized to 1. The depolarizing phase of the
current waveform is similar across the different values of α.
On the other hand, the hyperpolarizing phase tends to fluctu-
ate irregularly with changes in α, implying that the accuracy
of optimization with the proposed method would not be high
enough to discriminate a precise change in the optimal current
waveform (but see also Discussion). The invariance of the
waveform for the depolarizing phase likely arises because
the time course of depolarization strongly affects the efficacy
of neuronal activation (Foutz and McIntyre 2010) and there-
fore may be strictly regulated to achieve optimal order param-
eter reduction.

Previous studies (Tass 2003; Wilson and Moehlis 2014a)
have examined the intermittent control of DBS, in which the
stimulus is temporarily inactivated when the network is in a
desynchronized state, and have shown that this technique is
effective to improve the total energy efficiency. To examine
the effectiveness of the intermittent control with the Fourier
stimuli, we have obtained the relationship between ρ and E in
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value converges to zero for α > 6 nA−2·mS, implying that the optimal
pulse input is too small to be obtained by the current optimization method
(see Methods). Therefore, the solution corresponding to this range of
large α is omitted in (b) and in the dashed line in (c)
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cases where the Fourier inputs, which are optimized with var-
ious α values, were periodically switched on and off. As

shown in Fig. S2c, the level of energy consumption is always
greater in the presence (red solid line) than the absence (black
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Fig. 4 Examples of the network
firing pattern. (a) The case
without current stimulation. (b
and c) The cases with optimal
Fourier inputs with moderate (b)
and strong (c) intensity. The
current waveform is obtained
through optimization with the
weight parameter α = 3.1 (b) and
3.1×10−3 nA−2·mS (c). In (a)-(c),
the left and right figures show the
raster plot and the distribution of
the firing phase (ϕj in Eq. (14)),
respectively. In the raster plot, the
x-marks shown with the same
color correspond to the neurons in
the same quadrant in the x-y
plane. The average order parame-
ter for each panel is ρ = 0.914 (a),
0.117 (b), and 0.0061 (c). (d) The
waveforms of the optimal Fourier
current obtained with α = 3.1
(black), 3.1×10−1 (green),
3.1×10−2 (blue) and 3.1×10−3

nA−2·mS (red), where the peak
value is normalized to 1. (The
black and red lines correspond to
the stimulus waveforms for (b)
and (c), respectively.) The length
of the double-headed arrow indi-
cates the period T of the periodic
current shown with the same
color
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solid line) of the intermittent control when the same level of
order parameter is achieved. We found that the decrease in the
energy efficiency of the Fourier stimuli due to the intermittent
control is a robust outcome across various values of the time
duration of the active and inactive phases. Further, the inter-
mittent regulation was found to significantly degrade the en-
ergy efficiency of the optimal pulsatile inputs (Fig. S2c,
dashed lines). These results would be attributable to the fact
that the inactivation of stimulus for even a brief period causes
a rapid increase in the order parameter, as in the examples of
Figs. S2a and S2b. Considering that such rapid change to a
synchronized state, in the absence of stimulation, is not found
in the previous studies mentioned above (Tass 2003; Wilson
and Moehlis 2014a), the effectiveness and efficiency of inter-
mittent control methods could depend on the time course of
synchronization, which would be intrinsic to the network dy-
namics in the absence of stimulating currents.

3.2 The effect of network properties on the efficacy
of CR stimulation

The optimization procedure used proceeds by modulating the
current waveform and directly evaluating a measure of the
resultant change in the network dynamics. This direct optimi-
zation scheme has an advantage that almost arbitrary changes
in the network dynamics can be handled by the optimization
process (see also Discussion). By exploiting this feature, here
we examine the effects of common oscillatory inputs,
representing signals from other brain areas (Fig. 5), and of
non-random connectivity (Fig. 6) on the efficacy of the CR
modulation with the Fourier stimuli. The former step is moti-
vated by the observation that pathological brain states such as
parkinsonism are associated not only with increased synchro-
nization but also with the emergence of abnormally strong
oscillations, while the latter step is based on findings that
neuronal synaptic connectivity patterns can deviate signifi-
cantly from random.

In Fig. 5a (solid lines), we compared the relationship be-
tween ρ and E(as in Fig. 3c, solid line) for scenarios with and
without common oscillatory inputs (see Methods). The ampli-
tude of the common inputs oscillates with a frequency of
25 Hz, which is intended to resemble the beta-band (10–
35 Hz) oscillation found in the basal ganglia-cortical loop in
parkinsonism (Rubin et al. 2012; Mallet et al. 2008; Gatev et
al. 2006). Our results (Fig. 5a, solid lines) show that the elec-
trical energy required for attaining a given level of order pa-
rameter becomes larger in the presence of the common oscil-
latory activity; however, with enough energy, low levels of the
order parameter can be induced even with common input
present. In addition, as shown in Fig. 5b, the required energy
level is significantly increased by increasing the intensity of
the common stimuli. This result would be attributed to the fact
that the common inputs tend to synchronize neurons through

harmonizing their firing phase (Türker and Powers 2001;
Feng et al. 2000) and therefore can enhance the robustness
of the synchronized state against stimulation. Additionally,
as shown in Fig. 5c, the period of the optimal stimulating
current (red line) is generally different from that of common
inputs (black line). Therefore, in the presence of common
oscillatory inputs, the stimulating current will have to over-
come the influence of the rhythmic activity for acquiring the
control over the network dynamics. In addition, in cases where
the current stimulus optimized in the absence of common
inputs is applied to the network in their presence (Fig. 5a,
dashed line), the energy efficiency for desynchronization
was only slightly degraded compared to the case where the
stimulus is both optimized and applied in the presence of
common inputs (Fig. 5a, red solid line). This finding suggests
that the stimulus optimized without considering the oscillatory
activity has a certain degree of robustness against changes in
input features, which is encouraging for the utility of optimi-
zation methods for stimulus design in neural environments.
As shown in Fig. 5d, the comparison of the optimal stimulus
waveform obtained with and without the common oscillatory
inputs showed that the addition of common inputs mainly
affects the hyperpolarizing phase of the waveform while
slightly modulating the length of the period, consistent with
the types of changes seen with changes in α in Fig. 4d.

Furthermore, we explored how the topology of network
connectivity can affect the effectiveness of CR stimulation.
Recent studies have suggested that the stimulation of the mo-
tor cortex of parkinsonian animals as well as advanced PD
patients can improve the motor symptoms through decreasing
the synchronized oscillatory activities in the basal ganglia-
cortical loop (Drouot et al. 2004; Gaynor et al. 2008;
Lavano et al. 2017). The treatment with MCS appears to be
potentially promising as an alternative to DBS to the basal
ganglia, since MCS is considered as a minimally invasive
neuromodulation procedure (Lavano et al. 2017). Since corti-
cal circuits could be characterized by small-world connectiv-
ity (Haeusler and Maass 2007; Bettencourt et al. 2007; Yu et
al. 2008; Gerhard et al. 2011), we examined the network
topology-dependent change in the efficacy of current stimula-
tion by comparing results of the proposed method across ran-
dom and small-world networks (Fig. 6a, b, respectively).

Figure 6c, d compare the distribution of firing phases
in the two networks, for the cases of applying the op-
timal stimuli with almost the same level of current en-
ergy (E = ∼5.8×10−3 nA2·kΩ). We found that the ran-
dom network exhibits a relatively randomized phase dis-
tribution corresponding to ρ = 0.102 (Fig. 6c), whereas
the small-world network exhibits a phase distribution
that features more order yet corresponds to a lower ρ
value of 0.043 (Fig. 6d). This finding suggests that syn-
chronous activity in the small-world network has lower
robustness against desynchronizing inputs than that in
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the random network. To more clearly show the compar-
ison, Fig. 6e presents the relationship of ρ vs. E for the
two types of networks and confirms that the electrical
energy required for desynchronization is considerably
smaller for the small-world (red line) than for the ran-
dom network (black solid line). Here, we also plotted
for several different values of α the characteristics of a
modified random network in which the neural connec-
tion is randomly decided under the condition that the
numbers of uni- and bidirectional connections between

neuron pairs are the same as those of the small-world
network (see Methods). The result suggests that the ρ
vs. E relationship for the modified random network
(Fig. 6e, blue line) is nearly the same as that for the
usual random network (Fig. 6e, black solid line). Thus,
the lower robustness of the synchronized state against
current stimulation in the small-world network is attrib-
utable not to the change in the numbers of uni- and
bidirectional connections but to the change in the con-
nection topology. Additionally, as shown in Fig. 6e

 (a)  (b)

 (c)  (d)

0 0.05 0.1 0.15 0.2

μ
com

(nA)

ρ = 0.1

ρ = 0.15

ρ = 0.2

E
 (

n
A

2
·k

Ω
)

100

101

10-2

10-1

0

0.4

0.8

1.2

-0.5

0

0.5

a co
m

I
stim  (n

A
)

a
com

I
stim

0

25

50

75

100

0 50 100 150 200

 t (ms)

N
eu

ro
n
 I

D

0

0.2

0.4

0.6

0.8

1

E (nA2·kΩ)

10-110-210-3 100 101

With common 
inputs 

Without
common
inputs

ρ

*

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60

With common inputs (α = 3.1×10–3 nA–2∙mS)

With common inputs (α = 3.1 nA–2∙mS)

 

Without common inputs (α = 3.1×10–3 nA–2∙mS)

Without common inputs (α = 3.1 nA–2∙mS)
 

 t (ms)

T = 48 ms

T = 40 ms

N
o
rm

al
iz

ed
 c

u
rr

en
t

T = 45 ms

T = 39 ms

Fig. 5 The effect of common oscillatory inputs on the effectiveness of
Fourier stimulation for desynchronization. (a) Solid lines: the relationship
between the average order parameter ρ and the energy consumption rateE
obtained by optimization with various values of α, for the cases of with
(red) and without (black) common inputs. The strength parameter for the
common inputs is μcom = 0.1 nA. The point denoted by an asterisk (E =
0.49 nA2·kΩ and ρ = 0.095) represents the solution corresponding to (c).
Dashed line: the ρ vs. E relationship obtained for the case where the
current stimuli, which are optimized with changing α values in the ab-
sence of common inputs, are applied in the presence of common inputs.
(b) The levels of E required for achieving three different levels of ρ are
plotted as functions of the mean of the shared white Gaussian noise
distribution μcom (ρ = 0.1 (black), 0.15 (blue), or 0.2 (red)). These curves
are obtained by using the linear interpolation of the ρ vs. E relationship,
obtained from optimization, for each μcom. (c) The lower figure shows the

raster plot of the neurons receiving the optimal stimulus in the presence of
common inputs (μcom = 0.1 nA andα = 0.16 nA−2·mS). The x-marks with
the same color correspond to the neurons in the same quadrant in the x-y
plane. The upper figure shows the time course of the common inputs

(acom in Eq. (3); black) and one of the four stimulating currents (I jstim in
Eq. 4; red). The vertical dashed lines represent the timings at which each
current takes its peak value. (d) Examples of the optimized current wave-
form for α= 3.1 (black) and 3.1×10−3 nA−2·mS (red), where the peak
value is normalized to 1. The solid lines show the cases with the common
inputs (μcom = 0.1 nA). The dashed lines show the cases without the
common inputs (the same as shown in Fig. 4d with the same color).
The length of the double-headed arrow represents the period T of the
periodic current shown with the same color and line style
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(black dashed line), when the stimulus optimized with
the random network was applied to the small-world net-
work, the ρ vs. E curve was found to lie between the
two curves for which the stimulus was both optimized
and applied in the identical networks (Fig. 6e, black and
red solid lines). We also compared the optimized current
waveform obtained using random and small-world net-
works. Figure 6f suggests that the change in network
topology significantly affects the hyperpolarizing phase
of the waveform almost without changing the depolarizing
phase, as in the case when common oscillatory inputs were
included (Fig. 5d). Overall, these results suggest that such
non-random topology in neural circuits could modulate the
optimal waveform of brain stimulation and its efficacy for

producing a desynchronized state, as well as the nature of
the desynchronized state that emerges.

4 Discussion

Decreasing the current requirements of brain stimulating de-
vices implanted for therapeutic interventions is an important
goal that will prolong battery lives and reduce stimulation-
induced side effects (Foutz and McIntyre 2010; Benabid et
al. 2009). In this study, we addressed this issue using the
approach of numerical optimization. In the proposed optimi-
zation method, the waveform of CR simulation is described as
a second-order Fourier series with the constant term removed,
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world network. Black dashed
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(f) Examples of the optimized
current waveform obtained with
the random (dashed) and small-
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and the Fourier coefficients and the period are optimized to
reduce the current energy required for achieving a
desynchronized state, quantified by a standard order parame-
ter. We demonstrate that after optimization, a Fourier input
requires less energy consumption than does a conventional
pulse input for attaining a given level of order parameter
(Fig. 3c).

Our results show that the application of moderate and
stronger intensity Fourier stimuli can change synchronized
activity into relatively randomized and lurching wave activi-
ties, respectively (Fig. 4 and Movies 1-3). In the lurching
wave pattern, the firing times of neurons are regulated almost
deterministically by the electrode current activation. The
emergence of this type of unnatural regular pattern would be
a limitation of the proposed method, which is based on the use
of an order parameter to measure synchrony, and also should
be considered in interpreting other computational studies of
stimulation involving this order parameter. In addition, it
should be kept in mind that the relationship between the level
of the order parameter and the symptoms of movement disor-
der has not yet been established. Although the proposed stim-
ulation method is energy efficient for decreasing the order
parameter, the interpretation of this result with respect to treat-
ment of PD should be made with care. In the future work, it
would be important to involve a measure that specifically
quantifies the extent of the pathological activity pattern in
parkinsonism. It is possible that features of basal ganglia ac-
tivity other than synchrony, such as downstream impacts of
basal ganglia inhibitory output (Rubin and Terman 2004) or
alterations in oscillatory power (Kühn et al. 2008), may be
more important than synchrony for inducing parkinsonian
symptoms. It has been shown computationally that CR stim-
ulation may significantly affect the former (Guo and Rubin
2011), and an immediate direction for future work could be to
optimize CR stimulation with respect to cost functions de-
signed based on this concept (cf. Feng et al. 2007).

We also applied the proposed optimization framework to
examine how the effectiveness of current stimulation can be
modulated by changes in network properties. We showed that
when common oscillatory inputs are presented to the network,
the desynchronizing stimulus becomes less effective, imply-
ing that the common inputs can strengthen the robustness of
synchronous activity in the presence of applied current stim-
ulation (Fig. 5). Standard DBS approaches ignore inputs to the
targeted area, assuming that local and downstream effects of
DBS will override pathological activity patterns occurring up-
stream. Our results offer a reminder that large-scale, system-
wide effects of interventions may be important to consider,
and extending our methods to models involving a more com-
plete cortical-basal ganglia-thalamic loop (Dovzhenok and
Rubchinsky 2012; Santaniello et al. 2015) would be a step
in this direction, albeit with a potentially heavy computational
cost for the optimization procedure.

Our results demonstrate that stimulation is more effective
for desynchronization in a small-world than in a random net-
work, suggesting that small-world connectivity can lead to the
weakening of the robustness of synchrony (Fig. 6). This result
is consistent with the general notion that randomly connected
networks synchronize more easily than more structured net-
works, but it was not an obvious outcome in light of results
showing that small-world oscillator networks generated from
lattices via a small number of rewirings can in some condi-
tions achieve similar or even improved synchronizability rel-
ative to random networks (Barahona and Pecora 2002; Hong
et al. 2002). Our results suggest that the efficacy of brain
stimulation used in the PD treatment could be highly affected
by connectivity patterns at the stimulation site and thus high-
light a possible pitfall of applying stereotyped stimulation pat-
terns across a variety of brain areas. On the other hand, we
found that for some energy levels, a similar reduction in order
parameter resulted from using the optimal stimulus derived
from both random and small-world networks to stimulate
small-world networks (Fig. 6e). This result offers hope that
even though full details of network connectivity are not ex-
perimentally accessible, optimization based on approximate
connectivity patterns could still yield useful results and thus
supports the practical utility of our methods. In the future, our
approach could be used to study various other factors that can
modulate network synchronization properties or responses to
stimulation, such as the microstructural pattern in the frontal
cortex (Muthuraman et al. 2017).

In this paper, we optimized stimulation waveforms for a
neuronal network with recurrent excitatory synaptic connec-
tions between neurons. The inclusion of local excitatory syn-
apses is relevant for thalamic networks, which are sites of
stimulation for tremor (Ondo et al. 1998; Kumar et al. 2003;
Baizabal-Carvallo et al. 2014), and cortical networks, which
are under investigation as targets for stimulation for parkinso-
nian conditions (Drouot et al. 2004; Gaynor et al. 2008; Rosin
et al. 2011; Lavano et al. 2017). It would be interesting, and
relevant for STN-DBS under parkinsonian conditions, to con-
sider a network lacking excitatory connections and exhibiting
synchrony due only to common inputs or a network including
an inhibitory population, to represent the STN-globus pallidus
loop (Terman et al. 2002).

The problem of searching for energy-optimal current wave-
forms has been receiving interest, due to its importance in
finding suitable stimulus delivery methods for implantable
neural stimulators (Jezernik and Morari 2005; Sahin and Tie
2007; Jezernik et al. 2010; Foutz and McIntyre 2010;
Wongsarnpigoon et al. 2010; Wongsarnpigoon and Grill
2010; Forger et al. 2011; see Grill 2015 for review). Recent
studies by Wilson and Moehlis (2014a, b) have applied opti-
mal control theory to find energy-optimal stimuli that endow
neuronal membrane dynamics with a positive Lyapunov ex-
ponent and thereby produce desynchronization. The approach
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of controlling the Lyapunov exponent is useful to substantially
desynchronize network activity by using just a single DBS
electrode with less energy consumption. But, optimal control
theory generally involves the solution of the Euler-Lagrange
equation, which is derived by differentiation of a modified
objective function including constraints (Dixon 1972). Since
the neuronal dynamics needs to be simply described in the
modified objective function, it would be difficult to fully con-
sider complicated network dynamics in this optimization pro-
cess. In contrast, in our proposed optimization method, the
class of stimulation patterns is directly explored by modulating
the current waveform and estimating the resultant change in the
order parameter from numerical simulation. This approach al-
lows the consideration of CR stimulation involving multiple
stimulation sites and of various changes in the network dynam-
ics, as demonstrated by the simulations in Figs. 5 and 6.

A disadvantage of our optimization method is that it takes
long time to search for a solution which can be adequately
considered to be globally optimal (see Methods for computa-
tion time). Moreover, it is generally difficult to ensure the
global optimality of solutions. As mentioned above, the opti-
mized current waveform was shown to change irregularly
with changing the weight parameter in our objective function
(Fig. 4d), which would imply the involvement of locally (but
not globally) optimal solutions. We note, however, that the
order parameter and energy associated with our optimal wave-
form depended relatively smoothly on the weight parameter
(Fig. 3) and varied smoothly with parameter changes as we
explored common inputs and network topologies (Figs. 5 and
6), despite the fact that for each simulation, we repeated the
pattern search 8 times from independent, randomly selected
starting points. This smooth dependence provides some reas-
surance that our results are not dominated by convergence to
locally optimal solutions far from global optima, since it is
highly unlikely that such local optima, attained from indepen-
dent starting point, would yield such regular changes in order
parameter and stimulation energy. Interestingly, the variability
that we did observe across optimal stimulus waveforms was
always associated with the hyperpolarizing phase, suggesting
that focusing on this phase might make sense for the design of
waveforms in future settings.

It is important to note several limitations of this study. A
main limitation of the proposed optimization scheme is that
the stimulus waveform is composed of low-order Fourier coef-
ficients (with the maximum degree p = 2 in Eq. 5), meaning
that the precise waveforms of optimal stimuli, represented by
higher order coefficients, cannot be obtained. Although the
charge balance is maintained in the proposed Fourier input to
avoid electrode and tissue damage, charge balancing is a nec-
essary but not sufficient condition for safe stimulation (Cogan
2008; Cogan et al. 2006). Large potential excursions during the
delivery of stimulating currents can induce irreversible reduc-
tion and oxidation reactions that are harmful to the electrode

and tissue. Therefore, adequately setting higher-order Fourier
coefficients could be important not only for allowing explora-
tion of a broader range of stimulation waveforms but also for
regulating the current injection on shorter time scales to prevent
these side effects.

Another limitation is that the current study is based on a
network model composed of simplified LIF neurons, which
allows for proof of the principle of the optimization approach
but may not be sufficient for providing quantitative predic-
tions. Some previous works illustrate the importance of non-
linear properties of membrane conductances for determining
the optimal current waveform for activating neurons (Forger
et al. 2011; Wongsarnpigoon et al. 2010). In addition to con-
sidering neuronal nonlinearities, practical application of this
work would require extension to represent extracellular
current-controlled stimulation conditions (Foutz and
McIntyre 2010). A detailed computational model by Foutz
and McIntyre (2010) studied the effectiveness of stimulating
currents with various waveforms for activating neurons. Their
results suggest that relative effectiveness of different current
waveforms does not fundamentally depend on whether an
intracellular or extracellular stimulation condition is used.
However, they also show that the temporal width of the opti-
mal current stimulus could change depending on the stimula-
tion conditions. Therefore, to improve the accuracy of the time
course of the optimal CR stimulation, it may be necessary to
include the mechanisms of current flow passing through the
neural membrane and the extracellular media surrounding the
neurons as in in vivo situations. Simulating the current stimu-
lation under more natural in vivo conditions also serves to
provide the basis for designing actual implantable systems,
which need to satisfy various tight constraints, such as those
on energy consumption considered in this study as well as
others on the device size and processing capacity
(Greenwald et al. 2016; Wise et al. 2008).
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